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Abstract

The regularity of pulsar emissions becomes apparent once we reference the pulses’ times of arrivals to the inertial
rest frame of the solar system. It follows that errors in the determination of Earthʼs position with respect to the solar
system barycenter can appear as a time-correlated bias in pulsar-timing residual time series, affecting the searches
for low-frequency gravitational waves performed with pulsar-timing arrays. Indeed, recent array data sets yield
different gravitational-wave background upper limits and detection statistics when analyzed with different solar
system ephemerides. Crucially, the ephemerides do not generally provide usable error representations. In this
article, we describe the motivation, construction, and application of a physical model of solar system ephemeris
uncertainties, which focuses on the degrees of freedom (Jupiterʼs orbital elements) most relevant to gravitational-
wave searches with pulsar-timing arrays. This model, BAYESEPHEM, was used to derive ephemeris-robust results
in NANOGravʼs 11 yr stochastic-background search, and it provides a foundation for future searches by
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NANOGrav and other consortia. The analysis and simulations reported here suggest that ephemeris modeling
reduces the gravitational-wave sensitivity of the 11 yr data set and that this degeneracy will vanish with improved
ephemerides and with pulsar-timing data sets that extend well beyond a single Jovian orbital period.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Astronomy data analysis (1858); Ephemerides
(464); Pulsar timing method (1305); Millisecond pulsars (1062)

1. Introduction

Pulsar timing exploits the remarkable regularity of milli-
second-pulsar emissions to extract accurate system parameters
from time-of-arrival (TOA) data sets (Lorimer & Kramer 2012),
by fitting precise timing models that account for all pulse
delays and advances, from generation near the neutron stars to
detection at the radio telescopes (Lommen & Demorest 2013).
The largest time-dependent term in the model is the Rømer
delay (Rømer 1676) due to the motion of Earth around the solar
system barycenter (SSB), with magnitude ∼500 s. Solar system
ephemerides (SSEs), such as those produced by the Jet
Propulsion Laboratory (JPL; see Folkner et al.
2009, 2014, 2016; Folkner & Park 2016, 2018), are used to
convert observatory TOAs to the notional coordinate time of an
inertial frame centered at the SSB. It follows that errors in our
estimate of Earthʼs trajectory around the SSB produce a time-
dependent bias in the TOAs.

Throughout many years of pulsar-timing studies and
discoveries, SSE errors were always considered negligible
compared to all other sources of noise and uncertainty (Foster
& Backer 1990a; Edwards et al. 2006a). TOAs are now being
collected with ever greater time spans and timing precisions,
especially so by the pulsar-timing array (PTA) collaborations
seeking to detect gravitational waves (GWs) as correlated
residuals (i.e., TOAs minus timing model) in multipulsar data
sets (Sazhin 1978; Detweiler 1979; Foster & Backer 1990b;
Hobbs 2013; McLaughlin 2013; Desvignes et al. 2016;
Verbiest et al. 2016). The estimated magnitude of the GW
signature is ∼100 ns or less, leading to the recent suggestion
that SSE errors could measurably bias GW results obtained
from these data sets (Tiburzi et al. 2016). Indeed, while SSE
corrections and GWs have different spatial-correlation signa-
tures across multiple pulsars, the two may yet be degenerate
when sampled with a limited number of PTA pulsars
(Roebber 2019).

Within the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav), we encountered this bias
first hand in early 2017, when we observed that switching
between the more recent SSEs issued by JPL (specifically
DE421, DE430, DE435, and DE436: Folkner et al.
2009, 2014, 2016; Folkner & Park 2016) led to discrepant
results (GW upper limits and detection statistics) in the search
for a stochastic signal from the population of supermassive
black-hole binaries, formed in the centers of galaxies following
major-merger events, as performed on the NANOGrav 11 yr
data set (Arzoumanian et al. 2018a, 2018b). See Figure 1 for
the Bayesian posterior probabilities of the GW-background
(GWB) amplitude, as obtained with a range of SSEs. We
verified that other recent PTA results (Shannon et al. 2015;
Arzoumanian et al. 2016) would be similarly affected.

In this article, we report on BAYESEPHEM, the physical
model of SSE uncertainties that we developed and integrated
with the NANOGrav GW analysis so that we could produce
SSE-robust results (Arzoumanian et al. 2018a) by margin-
alizing our Bayesian statistics over the SSE model parameters.

Our model complements published SSEs, which do not
generally include usable time-domain representations of orbit
uncertainties. We adopted the conservative goal of bridging the
JPL SSEs so that our analysis would yield the same GW-
amplitude posteriors, no matter which SSE was used to offset
the TOAs initially. As discussed in Section 4, the crucial
element in our approach turns out to be the modeling of
uncertainties in Jupiterʼs orbit, which create apparent SSB
motions with periods comparable to the duration of our data
set, and with amplitudes of ∼50 m. These correspond to
∼170 ns delays, within the GW sensitivity of our PTA. By
marginalizing GW posteriors over a set of SSE correction
parameters that include Jupiterʼs orbital elements, we achieve
our bridging criterion for the SSEs adopted in Arzoumanian
et al. (2018a) and indeed also for the newer DE438 (Folkner &
Park 2018); see Figure 1. By contrast, while we include SSB
corrections due to perturbations in themasses of the outer
planets (Champion et al. 2010), we conclude that the current
sensitivity of our data set is insufficient to constrain
thesemasses better than recent spacecraft tracking and Doppler
data sets (Jacobson et al. 2000, 2006; Jacobson 2009, 2014;
Caballero et al. 2018).
In our 11 yr analysis (Arzoumanian et al. 2018a), we

declined to adopt an aggressive stance that would have given
more credence to the more recent available SSEs (DE435 and
DE436), which are based on longer sets of solar system
observations that fully cover the span of our PTA data set, and
on more sophisticated analysis techniques. The resulting GW-
amplitude posteriors imply less evidence for GWs than those
obtained with earlier SSEs (see Table 1) and intermediate
estimates for 95% amplitude upper limits (see Table 2).
Nevertheless, even if DE435 and DE436 are described as
having only minor differences (Folkner et al. 2016; Folkner &
Park 2016), the resulting posteriors are still at variance—
especially so in the low GW-amplitude limit, which affects the
Savage–Dickey Bayes ratio used as our GW detection statistic.
Thus, uncertainty modeling remains important even if we
concentrate on newer SSEs.
This article is organized as follows. In Section 2, we

summarize the SSE production, and we describe the history and
stated accuracy of the JPL SSEs adopted in our work; in
Section 3, we discuss the TOA delays induced by SSE errors,
which are partially absorbed by the timing model, and we
identify Jupiterʼs and Saturnʼs orbits as the drivers behind GW-
posterior discrepancies; in Section 4, we formulate BAYESE-
PHEM and give details about its implementation in our PTA
data-analysis software, ENTERPRISE (Ellis et al. 2019); in
Section 5, we report on the Bayesian posteriors (for the GW
amplitude and for orbital-correction parameters) obtained with
BAYESEPHEM for NANOGravʼs 11 yr data set, reproducing
and expanding the results of Arzoumanian et al. (2018a); in
Section 6, we present simulations that probe the reduction in
GW sensitivity due to BAYESEPHEM; in Section 7, we discuss
other approaches toward SSE uncertainty modeling; and last, in
Section 8 we offer our brief conclusions.
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All computational results presented in this article were
obtained with ENTERPRISE (Ellis et al. 2019), used in
conjunction with the stochastic sampler PTMCMCSAMPLER40

and the pulsar-timing package TEMPO2 (Hobbs &
Edwards 2012). Code that supports all the calculations
discussed here and that produces all the figures of this paper

is available as a Jupyter notebook at https://github.com/
nanograv/11yr_stochastic_analysis.

2. Solar System Ephemerides

To derive the JPL SSEs41 (and similarly for the French
INPOP42 and Russian EPM43), the orbits of the Sun, the
planets, and a large number of asteroids are fit to heterogeneous
data sets collected over the last few decades. Measurement
techniques include spacecraft ranging and Doppler tracking,
direct planetary radar ranging, very long baseline interferome-
try of spacecraft, and (for the Moon) the laser ranging of
retroreflectors left by the Apollo missions (see Verma 2013 for
a review). Themasses of minor bodies are also included as fit
parameters, while themasses of the planets are held fixed to
values determined separately from spacecraft data for each
planet (Jacobson et al. 2000, 2006; Jacobson 2014, 2009).
The parameters of the fit are the initial conditions (“epoch”

positions and velocities) for all the bodies (as well as minor-
bodymasses); from these, orbits are integrated numerically,
providing a reference solution used to compute measurement
residuals. The integration is repeated with minor displacements
in all fit parameters, yielding variational partials for the orbits.
The fit parameters are then corrected by finding the linear
combination of the partials that minimizes the residuals in least-
squares fashion, and the scheme is repeated until the solution
converges (see, e.g., Newhall et al. 1983).
The most complex aspect of the process is the modeling of

observations for data sets that are both varied in technique and
unique to each planet and each new spacecraft (Moyer 2003)—
a Sisyphean task. Because it is difficult to assign realistic
uncertainties to many of the measurements (and, perhaps more
importantly, to estimate their systematic errors), the formal
errors and covariances estimated with the least-squares
procedure are considered unreliable and are not published with
the best-fit orbits. Instead, orbit accuracy is assessed by

Figure 1. (Left) Bayesian posteriors for the amplitude AGWB (at f=yr−1) of the GW stochastic background, modeled as a fixed power law with slope γ=11/3, as
appropriate for a population of inspiraling and GW-emitting supermassive black-hole binaries. The posteriors are computed for the NANOGrav 11 yr data set using
individual JPL ephemerides (dotted lines) and BAYESEPHEM (solid lines). The GW model (“model 2A” in Arzoumanian et al. 2018a) does not include Hellings–
Downs correlations, which however modify results only marginally. The incorporation of explicit SSE uncertainties into the analysis via BAYESEPHEM leads to
substantially lower evidence of a GW background and to much greater consistency among the different SSEs. (Right) Same posteriors as in the left panel, shown with
a logarithmic vertical scale that can be mapped to approximate GW vs. noise-only Bayes factors, by way of the Savage–Dickey formula

( ) ( ) ( ∣ ) ( )= ¹ = = =P A P A p A p A0 0 0 data 0GWB GW GWB prior GWB (Dickey 1971). The application of BAYESEPHEM brings all Bayes factors close to unity,
indicating no evidence for GWs once SSE uncertainties are taken into consideration. Bayes factors and 95% AGWB upper limits calculated from these curves are listed
in Tables 1 and 2.

Table 1
Bayesian Evidence for a GWB with Different SSEs

SSE No BAYESEPHEM Set III Keplerian

DE421 10.6 0.68 0.68
DE430 23.7 0.72 0.71
DE435 2.0 0.76 0.72
DE436 6.2 0.80 0.72
DE438 40.7 0.91 0.87

Note. Savage–Dickey Bayes factors in favor of a common γ=13/3 red-noise
process (“model 2A” of a GWB in Arzoumanian et al. 2018a) in NANOGravʼs
11 yr data set, obtained by fixing the fiducial SSE shown in column 1 and
omitting (column 2) or applying BAYESEPHEM in its Set III (column 3) or
Keplerian-element (column 4) formulations. The numbers shown here were
drawn from newly reproduced Monte Carlo runs and differ from those of
Arzoumanian et al. (2018a) by small sampling errors.

Table 2
95% Bayesian Upper Limits for AGWB

SSE No BAYESEPHEM Set III Keplerian

DE421 1.54×10−15 1.32×10−15 1.35×10−15

DE430 1.76×10−15 1.31×10−15 1.33×10−15

DE435 1.59×10−15 1.38×10−15 1.40×10−15

DE436 1.64×10−15 1.38×10−15 1.41×10−15

DE438 1.94×10−15 1.45×10−15 1.44×10−15

Note. 95% Bayesian upper limits on the amplitude of a γ=13/3 GWB in
NANOGravʼs 11 yr data set, listed as in Table 1. The numbers shown here
were drawn from newly reproduced Monte Carlo runs and differ from those of
Arzoumanian et al. (2018a) by sampling errors ∼0.02.

40 https://github.com/jellis18/PTMCMCSampler

41 https://ssd.jpl.nasa.gov/?ephemerides
42 https://www.imcce.fr/inpop
43 http://iaaras.ru/en/dept/ephemeris/epm
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analyzing model residuals and by comparing estimates that use
different subsets of the data (Folkner & Park 2015, 2018).

In this paper, we work with the four JPL SSEs used to
analyze the NANOGrav 11 yr data set (Arzoumanian et al.
2018a) as well as the more recent DE438. While we have also
investigated some of the SSEs provided by INPOP (Fienga
et al. 2014; Viswanathan et al. 2018), we find that they are not
qualitatively different in terms of their GW constraints.

DE421 (Folkner et al. 2009): published in 2009, based on data
through 2007. The orbits of the inner planets are known to
subkilometer accuracy—those of Jupiter and Saturn to tens
of kilometers; Uranus and Neptune are not well deter-
mined. The axes of the ephemeris are oriented with the
International Celestial Reference Frame (Ma et al. 1998)
with accuracy 1mas.

DE430 (Folkner et al. 2014): published in 2014, based on data
through 2013. Orbit integration relies on a more
sophisticated dynamical model. The Saturn orbit is more
accurate thanks to the improved treatment of range
measurements to the Cassini spacecraft (Hees et al.
2014). The axes of the ephemeris are oriented with the
2009 update of the International Celestial Reference
Frame, ICRF2 (Fey et al. 2015) with accuracy
0.2mas, which represents the limiting error source for
the inner planets, corresponding to orbit uncertainties of a
few hundred meters. The Jupiter and Saturn orbits are
determined to tens of kilometers, those of Uranus and
Neptune (which are constrained mainly by astrometric
measurements) to thousands of kilometers.

DE435 (Folkner et al. 2016): published in 2016; it improves the
Saturn orbit using Cassini data through 2015, correcting it
by ∼1.5 km. The Jupiter orbit had been updated (by
∼50km) in the 2015 DE434 ephemeris (Park et al. 2015)
by reprocessing data from six spacecraft flybys and adding
data from the New Horizons flyby. In DE435, Jupiter’s
orbit is tweaked further (by ∼20km) by reweighting the
data sets. These changes are deemed “consistent” with the
estimated orbit uncertainties (Park et al. 2015; Folkner
et al. 2016).

DE436 (Folkner & Park 2016): published at the end of 2016; it
updates the Jupiter ephemeris (by ∼20km) for use by the
Juno navigation team. Saturn’s orbit changes very slightly.

DE438 (Folkner & Park 2018): published in 2018 June; it
updates the Jupiter ephemeris (by ∼10km) with Juno
measurements (six ranges and four VLBI observations
near perijove), and the Saturn ephemeris (by ∼1km) with
reprocessed ranges through the end of the Cassini mission.
The accuracy of Jupiter’s orbits is deemed “at least a factor
of four better than previous ephemerides,” viz. 10km.

Across these ephemerides, the orbit of Earth relative to the
Sun is consistent at the 3m (∼10ns) level, after applying an
overall rotation with respect to the International Celestial
Reference Frame (within the uncertainties of that “tie”) and a
rotation rate about the ecliptic pole.44 However, the orbit of the
Sun and therefore the orbit of Earth (both relative to the SSB)
match only at the 100m (∼300ns) level across ephemerides
(see Figure 2). This discrepancy arises from the estimated
positions of Jupiter, Saturn, Uranus, and Neptune. Using a

simple dynamical model of the solar system (i.e., integrating
the equations of Newtonian gravity for the eight planets and the
Sun), it is easy to show that if we perturb themasses or the
orbits of the outer planets, we affect the Sun-to-SSB and Earth-
to-SSB trajectories through the resulting redefinition of the
SSB, rather than through the very minor changes in the
gravitational pull of the outer planets (see also Guo et al. 2019).
The last few JPL ephemerides focus on Jupiter and Saturn, as

motivated by the navigation needs of JPL missions to those
planets. In DE421 to DE436, Saturnʼs orbit is known better
than Jupiterʼs, because the Cassini tracking data is more
complete and accurate than was possible for previous space-
craft. In particular, the high-gain antenna of the Jupiter orbiter
Galileo failed to deploy, leading to low-accuracy measure-
ments. Data from the Juno spacecraft, which has been orbiting
Jupiter since 2016 July, appears to improve the Jupiter
ephemeris substantially (Folkner et al. 2009).

3. SSE Errors as Systematics for Pulsar-timing Arrays

The search for stochastic GW signals with PTAs exploits the
distinctive quadrupolar signature in the interpulsar correlations
of timing-model residuals (Hellings & Downs 1983). Residuals
are obtained after applying a chain of corrections that convert
the TOA measured at the radio telescope to the notional
emission time in the pulsar system (see, e.g., Edwards et al.
2006b):

( )= - D - D - Dt t , 1e
psr

a
obs

IS B

where te
psr and ta

obs are the emission and arrival times, Δe

captures corrections between the observatory and SSB frames,
ΔIS describes corrections between the SSB frame and the
pulsar-system barycenter, and ΔB the model corrections from
the pulsar system barycenter to the pulsar frame (which are
relevant for binary systems). Among these terms, ΔIS is very
large, but changes very slowly over the duration of pulsar data
sets and thus maps to a constant phase offset. Next comes the
Rømer delay (Rømer 1676), corresponding to the light-travel
time (∼500 s) between the observatory at robs and the SSB
atrSSB:
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where p̂ is the unit vector in the direction of the pulsar. In fact,
p̂ is determined from pulsar-timing data mainly through the
time dependence of Equation (2).
The errorsδrobs andδrSSB induce systematic TOA delays

according to Equation (2). Furthermore, the position of the
observatory with respect to Earthʼs barycenter is known to few-
centimeter (sub-nanosecond) accuracy (Edwards et al. 2006b),
so we may write the systematic Rømer-delay error as

( ) · ˆ
( )
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d
= -

x p
t

t

c
, 3R

3
a
obs

wherex(3) ≡r(3)−rSSB is the terrestrial barycenterʼs position
in the SSE frame where the SSB is identified with the origin,
andδx(3)(t) is the systematic error (a function of time) in the
SSEʼs estimate ofx(3)(t). Here and below, we index the solar
system planets from Mercury to Neptune from (1) through (8),
so Earth is (3). We will also continue to usex to refer to vectors
in the SSE frame, with origin at the SSB.

44 This accounts for differences in the estimated semimajor axis of the Earth–
Moon barycenter orbit, which gives rise to a linear rate in estimated ecliptic
longitude.
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The time dependence of the SSE errors is essential to the
effect of the ensuing residuals on GW searches in PTA data.
Constant offsets, as well as linear and quadratic trends, are
absorbed by redefinitions of the timing-model parameters that
describe the intrinsic spin evolution of the pulsar; in other
words, the TOA likelihood is affected only by δtRe minus the
best-fitting quadratic polynomial.45 Other free parameters in the
timing model yield similar subtractions: most important, an
angular misalignment between the SSE frame and the “true”
sidereal frame can be absorbed by a slight coherent displace-
ment in the position of all pulsars; the corresponding TOA
corrections are sinusoidal with periods of one sidereal year.

PTAs are most sensitive to GWs with periods of a few to
several years, on the order of the total time span of
observations;46 therefore, SSE errors in the orbits of the giant
planets, which have comparable periods, could be mistaken for
GWs. Correcting the orbit of a planet by the time-dependent
vectorδr(t) corresponds to offsetting the SSB position by
(mplanet/ mSS)×δr(t), where mSS is the totalmass in the solar
system. We then estimate

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

( )

( )

( )

d d
d d

d d

» ´ » »
» ´ ´ » »
» ´ ´ » »

-

-

-

x x

x x

x x

10 50 km 50 m 170 ns,

3 10 50 km 15 m 50 ns,

5 10 5000 km 250 m 800 ns,
4

SSB 5 3

SSB 6 4

SSB 7,8 5

where the quantities in nanoseconds are light-travel times
equivalent to the distances. While the uncertainties due to
Uranus and Neptune are larger, their orbital periods
(P(7)=84 yr and P(8)=165 yr) ensure that the corresponding
δxSSB appear as linear or mildly quadratic TOA trends, which
are absorbed by timing models (and will continue to be, until
PTA data sets approach a century in duration). By contrast,
Jupiter and Saturn corrections enter the residuals with
timescales (P(5)=12 yr and P(6)=29 yr) comparable to the

span of our data set—just where PTAs are most sensitive
to GWs.
Likewise, the absolute location of the SSB is degenerate with

the initial phase of the pulses for each pulsar, so we need not
worry that the former depends strongly on the set of bodies that
are included in each SSE fit. For instance, including trans-
Neptunian objects relocates the SSB by ∼100km (Folkner
et al. 2014).
Champion et al. (2010) discuss pulsar timingʼs potential to

constrain themasses of outer planets. The uncertainties in
current IAU best estimates (derived from spacecraft tracking
and Doppler studies: Jacobson et al. 2000, 2006; Jacob-
son 2014, 2009; IAU Division I Working Group on Numerical
Standards for Fundamental Astronomy 2017) give rise to
Rømer corrections comparable to the orbit errors. These scale
as (δmplanet/mSS)×r, so

( ) ( ) ( )
( ) ( ) ( )
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1.6 10 5.2 au 12 m 40 ns,

8.2 10 9.4 au 12 m 40 ns,

3.2 10 19 au 90 m 300 ns,

8.0 10 30 au 360 m 1.2 s.
5

SSB 5 11

SSB 6 12

SSB 7 11

SSB 8 11

These corrections yield delays with the same periods as the
corresponding planets, so again they may be observable in PTA
data sets for Jupiter and Saturn, but not for Uranus and
Neptune.
In Figure 3, we show the difference between Rømer delays

for 100 simulated pulsars randomly distributed across the sky,
as computed with DE421/DE430/DE435/DE438 and with
DE436, which is taken as a reference. Thus, we are plotting the
systematic error that we would introduce using the other SSEs
if DE436 gave exact orbits. We represent timing-model fits by
subtracting the best-fitting quadratics and 1 yr-period sinusoids.
The plot covers the span of the NANOGrav 11 yr data set. The
differences reach ∼100 ns with typical periods of ∼10–12 yr
(consistent with a Jovian attribution)—within the sensitivity
range and band of GW searches. Indeed, as we see in Figure 1,
the GW-amplitude posteriors for the NANOGrav 11 yr
stochastic-background characterization are affected signifi-
cantly by the choice of SSE.

Figure 2. Differences in Earth–Sun position,r(3)−rSun, and in Sun–SSB position,rSun−rSSB, between pairs of JPL SSEs. Note the difference in the vertical scale of
the two panels. Earth–SSB plots, not included here, would appear essentially the same as Sun–SSB plots, as the Earth–Sun differences are very small. For reference,
2.5m≈8ns, and 0.1km≈300ns, bracketing the range of amplitudes expected for GW signals in PTA data sets. We plot SSE equatorial-coordinate differences
over the approximate span of NANOGravʼs 11 yr data set, and we apply the best-fit frame rotation that minimizes the 3D norm of the difference. Dotted curves are
zoomed ×10 vertically. Dotted vertical lines mark the end of the DE421 and DE430 fitted data sets. For clarity, we also remove a ∼100m mean in each coordinate in
the Sun–SSB differences; such a constant offset does not affect PTA likelihoods.

45 In a Bayesian context ,there is no single best-fitting polynomial when noise
parameters are included in the inference, leading to varying weights for the fit.
Nevertheless, the subtracted features remain largely irrelevant to parameter
posteriors.
46 This can be understood by noticing that the dominant source of residual
noise (“radiometer” measurement noise) is white, but TOAs are sensitive to
time integrals of GW strain, so the effective GW noise grows with frequency.
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4. BAYESEPHEM: A Physical Model of Solar System
Ephemeris Uncertainties for Gravitational-wave Searches

in PTA Data

We set out to address the sensitivity of the NANOGrav
stochastic-background analysis to SSE systematics by devel-
oping a parameterized physical model of SSE uncertainties
(BAYESEPHEM), so that we can compute robust GW-parameter
posteriors by marginalizing over the SSE parameters. Moti-
vated by the discussion of Sections 2 and 3, we include the
following components:

1. TOA delays generated by corrections to themasses of
Jupiter, Saturn, Uranus, and Neptune, modeled as
Champion et al. (2010):

( ) · ( )( )
( ) ( )

d d
d

= -
x p

t m
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m c
. 6p

p p

R SS

We impose normal Bayesian priors on the δm( p), with
standard deviation equal to the IAU-adoptedmass-
estimate uncertainties (IAU Division I Working Group
on Numerical Standards for Fundamental Astron-
omy 2017). For each pulsar data set, we compute the
x(p) by evaluating the DE436 SSE at the measured TOAs
{ti}.

2. TOA delays generated by a rotation rate about the ecliptic
pole (as needed to absorb Sun-to-Earth orbit differences
among SSEs),
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where R (·)ẑ is the appropriately oriented rotation matrix
and ( )ˆdq w= -t tz

0 is the rotation angle, with ˆwz the rate
and t0 set at the beginning of the NANOGrav data set. We
impose uniform Bayesian priors on ˆwz that are commen-
surate with the rotation rates needed to reduce the
difference between the JPL SSEs. Given that these rates
are very small, we linearize Equation (7) with respect to

ˆw ;z as for δtRe(δm
(p)), we compute x(3) by evaluating the

DE436 at the measured TOAs {ti} for each pulsar data
set.

Note that we do not expect this term to affect GW
posteriors: both static and uniform rotations of the SSE
frame are absorbed in the estimated positions and proper
motions of the pulsars. We omit the former altogether and
include ˆwz as a check.

3. TOA delays generated by perturbing Jupiterʼs average
orbital elements, as given by
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where the six aμ are the six J2000 Keplerian elements
(semimajor axis, eccentricity, inclination, mean long-
itude, longitude of the perihelion, longitude of the
ascending node) and the δaμ are their perturbations.
Alternatively, we can formulate the perturbations in terms
of Brouwer and Clemenceʼs “Set III” parameters
(Brouwer & Clemence 1961), for which we have access
to uncertainty estimates for certain JPL SSEs (Park et al.
2015; Folkner & Park 2018; see Figure 5). The two
formulations are largely equivalent with respect to their
effect on GW searches.

To implement the Rømer-delay perturbations, we
begin with approximate values for the aμ and their rates
of change.47 We vary these aμ to minimize the (rms)
difference between our quasi-Keplerian orbits and
DE436, integrated between years 2000 and 2020. The
resulting orbits are within 1% of DE436, which ensures
similar accuracy for the orbit partials, more than enough
for our purposes.

We compute the six partials as finite differences;
because they are strongly correlated (see the top panel of
Figure 4) and have different scales in their natural units,
we decorrelate and normalize them by computing the
singular value decomposition ån mn n nU S V ik of the matrix

( )( )= ¶ ¶m
mP x t aik k i

5 , and adopting ( )( )¶ ¶ ºn
nx t b Vk i ik

5

as new orbit partials (see bottom panel of Figure 4),
where d d= ån

m
m

mnb a M with Mμν=UμνSν (no summa-
tion intended). The resulting units are mixed. We give the
orthonormalized coefficients δbμ uniform priors that are
broad enough to generate the range of Rømer variation
seen across the JPL SSEs and to contain the support of
the PTA likelihood for the NANOGrav 11 yr data set. In
other words, we make the priors broad enough that the
posteriors do not impinge on the boundaries.

We do not include Uranusʼ and Neptuneʼs orbital
perturbations, which currently lead to δtRe with linear

Figure 3. Differences in Rømer delays computed with DE421/DE430/DE435/DE438 and taking DE436 as reference for 100 simulated pulsars randomly distributed
across the sky, plotted after subtracting the best-fitting quadratic and yearly sinusoid. The darker curves with the various dashed styles allow a comparison of the same
pulsars across the three differences. The plot covers the span of the NANOGrav 11 yr data set. For any given pulsar, these differences are reduced to less than 10 ns
after subtracting the best-fitting linear combination of the BAYESEPHEM partials, dotted into the pulsar position to obtain Rømer delays.

47 The six aμ plus the rate of change  ºa l4 of the mean longitude specify
Jupiterʼs orbit as the osculating ellipse at the J2000 reference epoch (MJD
2451545); the remaining five rates encode the secular evolution of Jupiterʼs
orbit due to SSB bodies other than the Sun and to other physical effects. See
https://ssd.jpl.nasa.gov/txt/aprx_pos_planets.pdf.
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time dependencies that are absorbed entirely by timing-
model parameters. By contrast, we repeat the procedure
that we just outlined for Saturn, but find that GW
posteriors are barely affected for orbital perturbations of
magnitude comparable to the differences among the JPL
SSEs. Thus, in our use of BAYESEPHEM, we usually omit
Saturn orbit perturbations. These may prove more
important as data sets increase in length.

The components outlined above are brought together into a
linear delay model δtRe(c

a) written as the product of the 11
dimensional correction vector { }( ) ˆd w dº nc m b, ,a p z (with
(p)=5, 6, 7, 8 and ν=1, K, 6) by the (nTOAs×11)
dimensional design matrix Gia with columns defined by the
equations in this section. This model, including variational
partials for Keplerian and Set III parameterizations, is available
as part of the open-source software package ENTERPRISE (Ellis
et al. 2019).

It is also possible to treat the linear model as a Gaussian
process common to all pulsars and to marginalize analytically
over the c a, by building the effective correlation matrix
GiaΦabGjb, where Φab is the prior covariance of the ca (van
Haasteren & Vallisneri 2014). The basis vector for each c a

corresponds to the concatenation of the Rømer-delay perturba-
tions that the parameter generates for each pulsar (i.e., the

projection of the same vector time series onto differentp, at the
appropriate TOAs).

5. Effect of BAYESEPHEM on the Search for Stochastic
Gravitational Waves in NANOGravʼs 11 yr Data Set

To derive the SSE-robust results reported in Arzoumanian
et al. (2018a), we sampled the BAYESEPHEM corrections c a

alongside the hyperparameters that describe the common GW
background and the noise parameters for each pulsar (see
Section 3.4 of Arzoumanian et al. 2018a and Sections 3 and 4
of Arzoumanian et al. 2016), treating δtRe(c

a) as a determi-
nistic correction to the residuals.
In Figure 1, we show Bayesian posteriors for the stochastic-

background amplitude AGWB at a fiducial frequency of yr−1, as
computed by fixing the fiducial SSE to DE421, DE430,
DE435, DE436, and DE438 in turn, and either disabling
(dotted lines) or applying BAYESEPHEM in the Set III
formulation (solid lines). The prior on log10 AGWB is flat in
[−18, −14], and the GWB spectral slope is set to γ=13/3, as
appropriate for an ensemble of binary inspirals progressing by
GW emission alone. The posteriors follow from PTA like-
lihoods that omit Hellings–Downs correlations (as in “model
2A” rather than “3A” of Arzoumanian et al. 2018a), but results
change only modestly if we include those. (Simulations show
that as PTA data sets become more sensitive to GWs, a GWB

Figure 4. Top: perturbative partials (x, y, and z coordinates, geometrized units of seconds) for Jupiterʼs orbit between the years 2000 and 2020, as obtained by varying
the six Keplerian elements in a quasi-Keplerian model that includes their rates. The baseline elements and rates are adjusted to fit DE436 orbits. Here, a is the
semimajor axis of the orbit, e the eccentricity, ı the inclination, ℓ the mean longitude, ϖ the longitude of the periapsis, and Ω the longitude of the ascending node.
Bottom: singular value decomposition vector time series obtained from the partials in the top panel.
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would manifest first as seemingly uncorrelated red-noise
processes of comparable amplitude in multiple pulsars, and
later as a Hellings–Downs-correlated process across the PTA,
providing more conclusive evidence of the GW origin of the
signal).

The plots in Figure 1 demonstrate the successful bridging of
AGWB, our goal in mitigating the systematic effects of SSE
errors. In doing so, BAYESEPHEM removes hints that any
GWB is present, as confirmed by computing model 2A Bayes
factors (in favor of a common GWB process), listed in Table 1.
In Table 2, we show 95% AGWB upper limits, computed as just
discussed but with flat uninformative priors on AGWB. The
tables (as well as plots analogous to Figure 1 not shown here)
confirm that the Set III and Keplerian-element formulations are
equivalent with respect to GW detection.

The posterior distributions of the BAYESEPHEMmass
perturbations are identical to their IAU priors: NANOGravʼs
11 yr data set is uninformative compared to current estimates
from spacecraft data. Likewise, the frame rotation rate ˆwz fills
its prior, as expected. The posterior distributions of the
BAYESEPHEM corrections to Jupiterʼs orbital elements are
shown in Figure 5, where they are compared to JPLʼs estimated
uncertainties for DE435 and DE436, derived by comparing
SSE fits that use independent subsets of the data (Park et al.
2015). The NANOGrav posteriors appear consistent with all
SSEs: they have reasonably high support around the estimated-
uncertainty region around δaμ=0. The least-consistent
parameters are those involving rotations of the orbital plane
(DMW and EDW; see the caption of Figure 5), as well as the
eccentricity (DE) for the oldest SSEs, DE421 and DE430.
JPLʼs estimated uncertainties for DE438 are a factor of ∼4
tighter than those for DE435/6, but they do not change this
picture substantially.

The large dispersion of the BAYESEPHEM posteriors is not
unexpected, given that pulsar-timing data is sensitive to Rømer
delays in a rather selective fashion (see the discussion of
Section 3). In terms of uncertainties on Jupiterʼs instantaneous
position, the BAYESEPHEM posteriors map to rms 3D errors
∼100 km, and thus are larger than the differences between
SSEs. While BAYESEPHEM can bridge NANOGrav 11 yr AGW

posteriors for different SSEs, the resulting orbital-element
posteriors do not identify any specific systematic offset
among them.

6. Assessing Gravitational-wave-background Detection
Prospects when Using BAYESEPHEM

BAYESEPHEM is designed to model SSE uncertainties and
systematics, bridging published estimates of Earthʼs trajectory
around the SSB. To do so, BAYESEPHEM introduces new
parameters that govern a spatially correlated process of
amplitude comparable to the stochastic GWBs that we seek.
While SSE corrections and the GWB have different spatial-
correlation structures, the two may nevertheless remain
degenerate when probed by a limited number of PTA pulsars
(Roebber 2019). It is then natural to ask how the application of
BAYESEPHEM may affect GWB-detection prospects (sensitiv-
ity and time to detection) in the weak-to-intermediate signal-to-
noise regime in which spatial correlations among the pulsars
carry marginal information. To sketch an answer to this
question, we conducted a set of simulations, which are
summarized briefly in Arzoumanian et al. (2018a) and
discussed further here.
We created multiple synthetic data sets meant to replicate the

sensitivity of NANOGravʼs 11 yr (really, 11.4 yr) data. We
used actual observation epochs for the 34 analyzed pulsars and

Figure 5. Bayesian posteriors for corrections to Jupiterʼs “Set III” orbital elements, as obtained in BAYESEPHEMʼs application to NANOGravʼs 11 yr data set. The
solid curves show posteriors obtained by correcting different fiducial SSEs; the dotted curve shows JPLʼs estimate of uncertainties in Jupiterʼs osculating orbital
elements for DE435 and DE436 (Park et al. 2015). Parameter names follow JPLʼs orbit-determination package (Moyer 2003). Here, DA ≡ Δa/a, a fractional
correction to the semimajor axis of the osculating orbit; DE ≡ Δe, a fractional correction to the eccentricity; DMW=ΔM0+Δw, EDW=eΔw, DP=Δp, and
DQ=Δq, where M0 is the mean anomaly at the initial epoch (conventionally MJD 2440400.5) and (Δp, Δq, Δw) encode a rigid rotation of the orbit, with Δp and
Δq in the orbital plane and Δw normal to it.
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extended the time span to 15 yr by drawing observation times
from distributions fit to the last three years of measured data.
We simulated timing residuals by drawing random white- and
red-noise deviates at the maximum a posteriori 11 yr levels, and
again extrapolated to 15 yr from the last 3 of the 11 years.
These choices ensure that future data taking is represented with
cadence and precision comparable to the end of 2015—a very
conservative option given ongoing receiver upgrades and the
continuous addition of new pulsars to the PTA.

We calibrated these noise-only simulations by increasing
noise levels until the 11 yr “slice” of the data matched the
GWB upper limit (specifically the spatially uncorrelated model
2A, with uncorrected DE436) of Arzoumanian et al. (2018a).
All simulated data sets were created by postulating that DE436
was the “truth.” We then injected γ=13/3 GWBs of various
amplitudes and analyzed both the 11 yr slices and the full 15 yr
data sets by taking DE430 as our fiducial SSE, both with and
without BAYESEPHEM.

Our results were as follows: first, for noise-only data sets
without BAYESEPHEM, the systematic offset between DE430
and DE436 is interpreted as a GWB for both 11 yr and 15 yr
time spans, with (model 2A versus the noise-only model 1)
Bayes ratios of ∼2 and ∼20 respectively. The ratios are
reduced to levels consistent with noise fluctuations by the
application of BAYESEPHEM.

Second, as we increase the amplitude of injected GWBs
while applying BAYESEPHEM, the Bayes factors remain
marginal for the 11 yr data set, as do model 3A versus model
2A factors, the substantive spatial-correlation test of GW
presence. The latter are shown in Figure 6. The story is
different for 15 yr data sets, where the scaling of Bayes factors
with injected GWBs is comparable whether or not we apply
BAYESEPHEM. Indeed, the longer time span disentangles SSB
and GWB correlations, enabling detection even at the
astrophysically conservative levels described by Sesana and
colleagues (Sesana et al. 2016).

In summary, our simulations confirm that SSE errors can
produce spurious evidence for GWBs; they suggest that, in data
sets similar to NANOGravʼs 11 yr, BAYESEPHEM can

overcorrect these biases, suppressing the evidence for a “true”
GWB, but they imply also that this effect vanishes for longer
data sets. Thus, we expect that BAYESEPHEM will not impair
detection prospects in the near future—if of course nature
grants us a sufficient GWB bounty.

7. Other Modeling Approaches

In our analysis of NANOGravʼs 11 yr data set, we
experimented with other modeling approaches for SSE
uncertainties, which (in our implementation) did not satisfy
our bridging criterion or were otherwise disfavored. We discuss
them briefly here, as a reference for future investigations:

1. Planetarymass perturbations for outer-solar system
planets: modeled as in Champion et al. (2010, and as in
the first element of BAYESEPHEM; see Section 4), these
did not affect our AGWB posteriors significantly (and
therefore did not resolve the discrepancy among SSEs),
whether introduced with best-estimate priors (IAU
Division I Working Group on Numerical Standards for
Fundamental Astronomy 2017) or with more relaxed
assumptions.

2. Dipole-correlated Gaussian process: as proposed in
Tiburzi et al. (2016), the Rømer delays for individual
pulsars may be treated as Gaussian processes with
common power-law or free-spectral priors (van Haasteren
& Vallisneri 2014), and with dipolar spatial correlations
between pulsars ( q=C cosij ij, with θij the angle between
pulsars). We note that this approach is equivalent to
modeling the apparent motion of the SSB (or equiva-
lently, the error in Earthʼs orbit) as three Gaussian
processes (along the three spatial axes) with identical
uncorrelated priors, and then projecting the vector time
series onto the pulsar positions to obtain Rømer delays.

Dipole-correlated Gaussian processes were included
in models 2B, 2C, 3B, and 3C of our 11 yr analysis
(Arzoumanian et al. 2018a). It is unclear to us why the
approach failed to bridge AGWB posteriors across SSEs,
but the reason may be related to the choice of Gaussian-
process priors appropriate to describe the range and
shapes of variations among SSEs.

3. Rømer mixture: this phenomenological model describes
Earthʼs orbit as a linear combination of its estimate in
multiple SSEs, with mixture coefficients constrained by a
Dirichlet prior (see, e.g., Gelman et al. 2013). This
approach achieves bridging by construction, but it is
difficult to interpret physically. In our 11 yr investigation,
the posteriors of the mixture coefficients indicated a
moderate preference for DE435/6 over DE421 and
DE430.

4. Gaussian process based on numerical partials: in this
approach, SSE corrections are modeled as a finite
Gaussian process (Williams & Rasmussen 2006) in
which basis vectors are given by orbit partials (e.g., the
change in Earthʼs orbit as we vary the initial conditions
for all the planets), as computed by numerical integration
for SSE fits. The priors for the basis weights are given by
the formal covariance of the SSE fit parameters. The basis
vectors are then projected into Rømer delays for each
pulsar.

It turns out that only Jupiter and Saturn partials
matter to GW results; when restricted to these planets, the

Figure 6. Correlated vs. uncorrelated GWB Bayes factors (i.e., model 3A vs.
model 2A), estimated for a set of simulated 15 yr data sets with GWB
injections at increasing amplitudes. The data sets were generated by adopting
DE436 as the “correct” SSE, and analyzed using both the “wrong” DE430
ephemeris (dashed lines) and BAYESEPHEM (solid). The orange and blue lines
display results for the full data sets and their 11 yr “slices,” respectively. Their
comparison indicates that BAYESEPHEM will not impede the ability of PTAs to
make a definitive detection in the near future. Figure adapted from
Arzoumanian et al. (2018a).
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approach is effectively equivalent to the orbit-correction
sector of BAYESEPHEM—at least for the 11 yr time span,
for which numerical partials are very close to analytical
osculating-orbit perturbations.

8. Conclusion

It is striking that the abundance and precision of current PTA
data sets should be such that our sensitivity to GWs is limited
by the very accuracy to which we can position Earth around the
SSB. In the analysis of NANOGravʼs 11 yr data set
(Arzoumanian et al. 2018a), we took the conservative position
that robust GW upper limits and detection Bayes factors must
be reproducible with all SSEs released in the last 10 years, after
introducing a sufficiently descriptive model of SSE uncertain-
ties. To this end, we developed BAYESEPHEM, described in
this article, which focuses on the SSE degrees of freedom
(Jupiterʼs orbital elements) that measurably affect our GW
search, and which produces “bridged” AGWB posteriors, upper
limits, and Bayes factors. Because of this focus, the analysis of
NANOGrav data does not update the JPL SSEs significantly
(see Figure 5), although it provides uncertainty estimates
entirely independently of those offered by SSE makers (Park
et al. 2015; Folkner & Park 2018). We expect that it would be
possible to concentrate instead on a sector of SSE corrections
that do not affect GW results, but that would benefit from PTA
constraints, thus producing PTA-enhanced SSEs useful beyond
GW detection. For this purpose, we could adopt either the
orbital-elements formalism of Section 4 or the numerical-
partials approach of Section 7.

The conservative modeling attitude employed for NANO-
Gravʼs 11 yr analysis comes at the cost of a loss of GW
sensitivity, as described in Section 6 (see also Roebber 2019).
The GW statistics reported in Arzoumanian et al. (2018a; and
here in Tables 1 and 2) are supported in our Bayesian setting, in
which we decline to favor one SSE above others. However,
these results should not be considered binding for future GW
searches that rely on demonstrably accurate SSEs and that are
based on longer data sets where SSE and GW correlations
become disentangled: more precisely, data sets that cover a
longer time span with a sufficient number of high-quality
pulsars. Both conditions are now materializing: Junoʼs ongoing
measurements are improving estimates of Jupiterʼs orbit
(Folkner & Park 2018), which (we argue) is the limiting factor
for GW searches, and the NANOGrav data set is progressing
toward the 15 yr span, for which (we reckon) Jovian
systematics decouple from GW statistics. The combined data
sets assembled by the International Pulsar Timing Array
(Perera et al. 2019) have already passed this mark and thus may
already be immune to this problem.

The path toward an authoritative detection of low-frequency
GWs with PTAs requires intense and persistent timing
campaigns on the worldʼs most sensitive radio telescopes;
sophisticated inference techniques and clever high-perfor-
mance-computing algorithms, to make sense of ever-growing,
heterogeneous data sets with many unknown parameters; and a
confident control of TOA systematics at the nanosecond level.
Among the last, the error analysis and validation of high-
precision SSEs will remain paramount.
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